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J .  Phys. A: Math. Gen. 20 (1987) L653-L657. Printed in the UK 

LETTER TO THE EDITOR 

Finite-size corrections to matrix elements in a conformal 
theory. Applications to the magnetisation of the three-state 
Potts model 

P Reinicke and T Vescan 
Physikalisches Institut, Universitat Bonn, Nusallee 12, D-5300, Bonn 1, Federal Republic 
of Germany 

Received 20 March 1987 

Abstract. Using conformal invariance we calculate the leading corrections in 1/N to the 
magnetisation of the three-state Potts quantum chain. The results are in good agreement 
with our numerical finite-size results. 

In a recent paper, one of us has presented a method of calculating corrections to the 
conformal spectrum of quantum chains with a finite number of sites (Reinicke 1987). 
Since matrix elements are a better test than energy eigenvalues, we present in this letter 
the leading corrections to the magnetisation of the three-state Potts model obtaining 
good agreement with numerical results. 

The Hamiltonian of the three-state Potts quantum chain is given by 

where 
1 0  0 0 1  -=(; ; e,i r=(; ; ;) w=exp($.rri). (2) 

Here A has the meaning of the inverse temperature and N is the number of sites. We 
consider the Hamiltonian at its critical point, A = 1, and choose periodic boundary 
conditions r,+, = rl .  Since the Hamiltonian (1) is S3 = Z, 0, Z ,  symmetric i t  has 
block diagonal form HQ( Q = 0, 1 ,2  denoting the charge sector), with H I  = H2. Let l i )  
denote the lowest state of each sector. Hamer (1982) has shown that the magnetisation 
is related to the greatest eigenvalue A N  of the matrix 

Notice that these elements are independent of the site 1, and that the diagonal ones 
vanish. Let 

(4) a ,  =(olr,+r ; 1 i ) = ( o l r , + r ; p )  
b, =(ilr,+r:i2). 

Then U,, b, and A, are related by 

A N = h { l + [ l + 8 ( E ) 2 ] " 2 } .  4 
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Hamer (1982) gave the values of A N  for N G 10 and found by means of a Van den 
Broeck and Schwartz (1979) extrapolation A N  a N-2'15 with an accuracy of for 
the exponent. Table 1 shows our values for u N  and b, for N S 8. These quantities 
also show an N - 2 / ' 5  behaviour although the accuracy for the exponent is only 
(it seems that for A N  some corrections are cancelled). 

In order to obtain the next correction we set 

A N  =N-2/15 ( A + B N - " +  . . . )  

a N = N - 2 / 1 5 ( A , + B , N ~ W + . . . )  

bN = W2'15(Az+  BzN-" +. . .) 
where in view of ( 5 )  we choose the same exponent w. Using the extrapolations of Van 
den Broeck and Schwartz (1979) for the A N  we obtain (the convergence is here much 
better) 

A = 1.032 515 ( 5 )  B = 0.029 10 (5) w = 0.8000 ( 5 ) .  ( 7 )  

Now using w =0.8 one obtains from the values of U, and b, 

Al  = 1.001 42 (7) B ,  = +0.0083 (5)  

A2 = 1.093 90 (6) B2= -0.1027 ( 5 ) .  

Notice that the values of A and B are consistent with ( 5 ) .  
Now we calculate the ratio B , / A ,  using conformal invariance for the infinite chain 

(the calculation of the ratio B , / A 2  requires a four-point function, which is not known). 
Let us remind the reader that the spectrum of the three-state Potts model at A = 1 and 
N = CG can be described by the irreducible representations ( I R )  of two commuting 
Virasoro algebras with central charge c =: (Friedan et a1 1984, Dotsenko 1984). We 
denote by A the highest weight, and by A +  r the rth level having a degeneracy d(A, r )  
of one I R  of the Virasoro algebra. A state will be labelled by l A +  r, a +  f ;  i); i = 
1, .  . . , d(A, r ) d ( &  r ) .  For periodic boundary conditions the scaled spectra g Q ( Q  = 0, 
1,2 denotes the sector) can be described by the following sums of the I R  of the Virasoro 
algebras (von Gehlen and Rittenberg 1986, Cardy 1986a): 

80 = (0 ,010 ($, 30 (:, $0(5,5)@ (3 ,010  (0 ,310  (3,3) 
g -(II g - (1' L+)@(2+ 2+) .  (91 

1 - 1 5 ,  15)@(:7 ?) 2 -  15 9 15 3 9 3  

Let us denote by (T and (T+ the primary fields with scaling dimensions A = =A, where 
U (and its conformal family) has charge one, (T+ charge two. The primary fields p and 

Table 1. The matrix elements a ,  and b, defined in (4) for various number of sites N.  

N a N b, 

2 0.9156158 0.945 3795 
3 0.867 4123 0.908 6855 
4 0.834 4876 0.881 4460 
5 0.809 7724 0.859 9376 
6 0.790 1242 0.842 2460 
7 0.773 8928 0.827 2674 
8 0.760 11 11 0.814 3100 
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p+,  both with dimensions A = =; have charge one and two respectively. Since the 
matrix T(T') takes a state with charge j to a state with charge j - 1 ( j  + l ) ,  it has to 
be a linear combination of U + ,  p+((+,  p )  and their conformal families, so that 

r = aOu+(o, 0) + a , [ (  L-,(++)(o, 0) + ( L-,o+)(o, o)] + . . . + bOp+(o, 0) + . . . 
(10) r+ = a,o(O, 0) + a,[ ( L -  , (+)(O, 0) + (L- ,  a)(O, O)] + . . . + bop(O, 0) + . . . 

where, due to charge conjugation, we have the same coefficients in the expansion of 
r and r'. We consider the fields on the strip. Since the lowest state in the charge 
sector one 11)' corresponds to the state I&, &) of the conformal theory, we have for N 
going to infinity (I 1) + 11)') (Cardy 1986b) 

2/15 

' (0~a(0,0)+(+'(0,0)~1) '='(0~a+(0,0)~1) '= (g) =c(l la(o,  0)lO)' 

where = CAi,A2,Ai is the coefficient appearing in the short distance expansion 

c p A , ( Z I ) c p A * ( Z 2 )  = c C & * ( ~ I  - z2)A;-Al-A2 c p A l ( Z 2 )  + . * .. 
A; 

Notice that taking secondary fields of the conformal families of (T and U+ one obtains 
dependence, where k is a positive integer. (From the families of p and 

p+ one obtains an N-4/3-k dependence.) From equations (4),  (6), (8) and (11) we have 

(12) 

For a finite number of sites N, we expect corrections to the states. In general the 
Hamiltonian will be changed by irrelevant operators (Cardy 1986b) 

an ~ - 2 / 1 5 - k  

~ ~ ( 2 r r ) ~ " ~  = A,  = 1.001 42 (7 )  (~1/15.1/15.1,15)2=A21AI = 1.0924 (1) .  

where y, are parameters and cp, are local fields of the conformal theory having scaling 
dimensions (A ,  + r r ,  A, + F,) ,  with g, = A ,  + r, + A ,  + f ,  - 2 > 0 and g , , ,  3 g,. In first-order 
perturbation theory one obtains from (13) corrections to a state proportional to N-g, 
(Reinicke 1987). In order to simplify the formulae we assume that go< g1 and that cpo 
is a primary field with dimensions A. = Lo =: A. Suppose we want to obtain the leading 
corrections to the matrix element (Ol$+(O, O)lA', A'), where $' is a primary field with 
scaling dimensions A ' =  i'. By means of the method exposed in a previous paper 
(Reinicke 1987) we have 

(Ol$+(O, O)lA', A') = '(Ol$'(O, O)/A', A')' 

= '(OI$+(O, O)lA', A')' 1 -:( C A , , A , + , ~ ) ~ ( 2 ~ ) ~ A - 1 ~ ~ - ~ ~  

x ( lo1 dxxA- 'F(A,  A; 1; x ) +  ( F ( A ,  A; 1; x ) -  1) 
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where F is the hypergeometric function. In detail 

2A 27r 
= ( C A , , A - + , A ) 2 (  N) '(Ol@'(O, O)\A', A')' 0 d r  J dV 

- N / 2  

exp( -27r~A/ N )  
[2  c o s h ( 2 ~ T / N ) - 2  c o s ( 2 ~ v / N ) ] ~  

X 

= ;( CA,,,.+,A)2(2.rr)2A-' N2-2A lo' dxx*-'F(A, A; 1; x).  (15) 

The integrals in (14) are divergent for A > 1, but can easily be regularised. For 0 < A < 1 
we have after 2K partial integrations 

lo' dxxA-'F(A, A; 1; x ) +  dxx- '[F(A, A; 1; x ) -  13 

-3 -- (A - 3 v)r2( Y ) r 2 (  1 - A )  ) A:v] 

The right-hand side of this equation is perfectly well defined for K < A < K + 1 (the 
limit A +  K +; is finite). 

Now we return to the magnetisation of the three-state Potts model. It was established 
numerically (von Gehlen et a/  1987) that po is the primary field with A = A = s, and 
yo = 0.009 237 (7) (8, = 2 >  go = $). The constant ( Cl/ls+.l,ls,715)2 was also determined. 
Inserting these values into (14) and using (16), one has 

where the numerical error is due to the error in yo.  This reproduces the value of 
B I / A ,  = 0.0083 ( 5 )  of (8) within 20%. The ratio B 2 / A 2  could be determined in principle 
using the same method. However, in this case one needs the four-point function 
(u+pocr+uc)-which is not known-instead of the three-point function ( cpoa+u). 
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To conclude we want to give a list of the coefficients (partially published 
by von Gehlen et a1 (1987)) for the three-state Potts model. Apart from the trivial 
coefficients CA,A+,o = 1 there are essentially 12 non-vanishing coefficients, namely 

c 7 / 5 , 2 / 5 . 2 / 5  = - z c 7 / 5 , 7 / 5 , 7 / 5  = -%7/5,l /  l 5 . 1 / 1 5 *  

r(i/5) 
~ ( C ~ / ~ , I / I ~ , I / I S + ) ~  = Z ( C 7 / 5 , 2 / 5 ~ / 5 ) ~  = ( -)3'2( r(4/5)) =: x = 1.092 436 . . ' 

2 (18)  

c I /  15, I /  l 5 . u  15 c 2 / 3 , 2 / 3 . 2 / 3  C l / l S , I / l 5 , 2 / 3  7/ 5,1/  1 5 , 2 / 3 +  c 1 / 1 s , 1 / 1 5 + , 3  

( c 2 / 5 , 1 / 1 5 , 2 / 3 + )  = ?  
13 2 4 )2  = a 

( c 2 / 3 , 2 / 3 + , 3 ) 2  = --(-I 7 3  ( c 7 / S , 2 / 5 , 3  2 6  

where the last ones are not known. (Notice that the coefficients are symmetric under 
any interchange of the A and that CAl,A2,A3 = CA;,&;,*;.) Considering the operator 
content of cyclic boundary conditions together with periodic ones (von Gehlen and 
Rittenberg 1986) one can recognise a multiplet structure given by two multiplets 
(0 ,3,  & 3') and (& 3, &, &+). From (18) we see that for A i  ( i  = 1 , 2 , 3 )  belonging to the 
second multiplet ( C A , , A 2 , A 3 ) 2  always has the structure 'simple rational number times 
X'. From this and (12) we are tempted to set ( C 1 ~ 1 5 , 1 ~ 1 5 , 1 ~ 1 5 ) 2 = X ,  where X is given 
in (18). 

We are grateful to V Rittenberg for stimulating discussions and substantial support. 
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