Finite-size corrections to matrix elements in a conformal theory. Applications to the magnetisation of the three-state Potts model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L653
(http://iopscience.iop.org/0305-4470/20/10/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 15:09

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Finite-size corrections to matrix elements in a conformal theory. Applications to the magnetisation of the three-state Potts model

P Reinicke and T Vescan
Physikalisches Institut, Universität Bonn, Nusallee 12, D-5300, Bonn 1, Federal Republic of Germany

Received 20 March 1987

Abstract

Using conformal invariance we calculate the leading corrections in $1 / N$ to the magnetisation of the three-state Potts quantum chain. The results are in good agreement with our numerical finite-size results.

In a recent paper, one of us has presented a method of calculating corrections to the conformal spectrum of quantum chains with a finite number of sites (Reinicke 1987). Since matrix elements are a better test than energy eigenvalues, we present in this letter the leading corrections to the magnetisation of the three-state Potts model obtaining good agreement with numerical results.

The Hamiltonian of the three-state Potts quantum chain is given by

$$
\begin{equation*}
H=-\frac{2}{3 \sqrt{3}} \sum_{i=1}^{N}\left[\sigma_{i}+\sigma_{i}^{+}+\lambda\left\{\Gamma_{i} \Gamma_{i+1}^{+}+\Gamma_{i}^{+} \Gamma_{i+1}\right\}\right] \tag{1}
\end{equation*}
$$

where

$$
\sigma=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{2}\\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right) \quad \Gamma=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \omega=\exp \left(\frac{2}{3} \pi i\right)
$$

Here λ has the meaning of the inverse temperature and N is the number of sites. We consider the Hamiltonian at its critical point, $\lambda=1$, and choose periodic boundary conditions $\Gamma_{N+1}=\Gamma_{1}$. Since the Hamiltonian (1) is $S_{3}=Z_{3} \otimes_{s} Z_{2}$ symmetric it has block diagonal form $H_{Q}(Q=0,1,2$ denoting the charge sector $)$, with $H_{1}=H_{2}$. Let $|i\rangle$ denote the lowest state of each sector. Hamer (1982) has shown that the magnetisation is related to the greatest eigenvalue λ_{N} of the matrix

$$
\begin{equation*}
\left\langle\left. i\right|_{2} ^{\frac{1}{2}}\left(\Gamma_{l}+\Gamma_{l}^{+}\right) \mid j\right\rangle . \tag{3}
\end{equation*}
$$

Notice that these elements are independent of the site l, and that the diagonal ones vanish. Let

$$
\begin{align*}
& a_{N}=\langle 0| \Gamma_{1}+\Gamma_{1}^{+}|1\rangle=\langle 0| \Gamma_{1}+\Gamma_{i}^{+}|2\rangle \tag{4}\\
& b_{N}=\langle 1| \Gamma_{1}+\Gamma_{1}^{+}|2\rangle .
\end{align*}
$$

Then a_{N}, b_{N} and λ_{N} are related by

$$
\begin{equation*}
\lambda_{N}=\frac{b_{N}}{4}\left\{1+\left[1+8\left(\frac{a_{N}}{b_{N}}\right)^{2}\right]^{1 / 2}\right\} . \tag{5}
\end{equation*}
$$

Hamer (1982) gave the values of λ_{N} for $N \leqslant 10$ and found by means of a Van den Broeck and Schwartz (1979) extrapolation $\lambda_{N} \propto N^{-2 / 15}$ with an accuracy of 10^{-5} for the exponent. Table 1 shows our values for a_{N} and b_{N} for $N \leqslant 8$. These quantities also show an $N^{-2 / 15}$ behaviour although the accuracy for the exponent is only 10^{-3} (it seems that for λ_{N} some corrections are cancelled).

In order to obtain the next correction we set

$$
\begin{align*}
& \lambda_{N}=N^{-2 / 15}\left(A+B N^{-\omega}+\ldots\right) \\
& a_{N}=N^{-2 / 15}\left(A_{1}+B_{1} N^{-\omega}+\ldots\right) \tag{6}\\
& b_{N}=N^{-2 / 15}\left(A_{2}+B_{2} N^{-\omega}+\ldots\right)
\end{align*}
$$

where in view of (5) we choose the same exponent ω. Using the extrapolations of Van den Broeck and Schwartz (1979) for the λ_{N} we obtain (the convergence is here much better)

$$
\begin{equation*}
A=1.032515(5) \quad B=0.02910(5) \quad \omega=0.8000(5) . \tag{7}
\end{equation*}
$$

Now using $\omega=0.8$ one obtains from the values of a_{N} and b_{N}

$$
\begin{array}{ll}
A_{1}=1.00142(7) & B_{1}=+0.0083(5) \\
A_{2}=1.09390(6) & B_{2}=-0.1027(5) \tag{8}
\end{array}
$$

Notice that the values of A and B are consistent with (5).
Now we calculate the ratio B_{1} / A_{1} using conformal invariance for the infinite chain (the calculation of the ratio B_{2} / A_{2} requires a four-point function, which is not known). Let us remind the reader that the spectrum of the three-state Potts model at $\lambda=1$ and $N=\infty$ can be described by the irreducible representations (IR) of two commuting Virasoro algebras with central charge $c=\frac{4}{5}$ (Friedan et al 1984, Dotsenko 1984). We denote by Δ the highest weight, and by $\Delta+r$ the r th level having a degeneracy $d(\Delta, r)$ of one IR of the Virasoro algebra. A state will be labelled by $|\Delta+r, \bar{\Delta}+\tilde{r} ; i\rangle ; i=$ $1, \ldots, d(\Delta, r) d(\bar{\Delta}, r)$. For periodic boundary conditions the scaled spectra $\mathscr{E}_{Q}(Q=0$, 1,2 denotes the sector) can be described by the following sums of the IR of the Virasoro algebras (von Gehlen and Rittenberg 1986, Cardy 1986a):

$$
\begin{align*}
& \mathscr{E}_{0}=(0,0) \oplus\left(\frac{2}{5}, \frac{2}{5}\right) \oplus\left(\frac{2}{5}, \frac{2}{5}\right) \oplus\left(\frac{7}{5}, \frac{7}{5}\right) \oplus(3,0) \oplus(0,3) \oplus(3,3) \\
& \mathscr{E}_{1}=\left(\frac{1}{15}, \frac{1}{15}\right) \oplus\left(\frac{2}{3}, \frac{2}{3}\right) \quad \mathscr{E}_{2}=\left(\frac{1}{15}+, \frac{1}{15}\right) \oplus\left(\frac{2+}{3}, \frac{2+}{3}\right) . \tag{9}
\end{align*}
$$

Let us denote by σ and σ^{+}the primary fields with scaling dimensions $\Delta=\bar{\Delta}=\frac{1}{15}$, where σ (and its conformal family) has charge one, σ^{+}charge two. The primary fields ρ and

Table 1. The matrix elements a_{\wedge} and b_{N} defined in (4) for various number of sites N.

N	a_{N}	b_{N}
2	0.9156158	0.9453795
3	0.8674123	0.9086855
4	0.8344876	0.8814460
5	0.8097724	0.8599376
6	0.7901242	0.8422460
7	0.7738928	0.8272674
8	0.7601111	0.8143100

ρ^{+}, both with dimensions $\Delta=\bar{\Delta}=\frac{2}{3}$ have charge one and two respectively. Since the matrix $\Gamma\left(\Gamma^{+}\right)$takes a state with charge j to a state with charge $j-1(j+1)$, it has to be a linear combination of $\sigma^{+}, \rho^{+}(\sigma, \rho)$ and their conformal families, so that
$\Gamma=a_{0} \sigma^{+}(0,0)+a_{1}\left[\left(L_{-1} \sigma^{+}\right)(0,0)+\left(\bar{L}_{-1} \sigma^{+}\right)(0,0)\right]+\ldots+b_{0} \rho^{+}(0,0)+\ldots$
$\Gamma^{+}=a_{0} \sigma(0,0)+a_{1}\left[\left(L_{-1} \sigma\right)(0,0)+\left(\bar{L}_{-1} \sigma\right)(0,0)\right]+\ldots+b_{0} \rho(0,0)+\ldots$
where, due to charge conjugation, we have the same coefficients in the expansion of Γ and Γ^{+}. We consider the fields on the strip. Since the lowest state in the charge sector one $\langle 1\rangle^{\text {c }}$ corresponds to the state $\left|\frac{1}{15}, \frac{1}{15}\right\rangle$ of the conformal theory, we have for N going to infinity $\left(|1\rangle \rightarrow|1\rangle^{c}\right)$ (Cardy 1986b)

$$
\begin{align*}
& { }^{\mathrm{c}}\langle 0| \sigma(0,0)+\sigma^{+}(0,0)|1\rangle^{\mathrm{c}}={ }^{\mathrm{c}}\langle 0| \sigma^{+}(0,0)|1\rangle^{\mathrm{c}}=\left(\frac{2 \pi}{N}\right)^{2 / 15}={ }^{\mathrm{c}}(1|\sigma(0,0)| 0\rangle^{\mathrm{c}} \\
& \langle 2| \sigma(0,0)+\sigma^{+}(0,0)|1\rangle^{\mathrm{c}}=\left(\frac{2 \pi}{N}\right)^{2 / 15}\left(C_{1 / 15,1 / 15,1 / 15}\right)^{2} \tag{11}
\end{align*}
$$

where $C_{\Delta_{1}, \Delta_{2}}^{\Delta_{3}^{+}} \equiv C_{\Delta_{1}, \Delta_{2}, \Delta_{3}}$ is the coefficient appearing in the short distance expansion

$$
\varphi_{\Delta_{1}}\left(Z_{1}\right) \varphi_{\Delta_{2}}\left(Z_{2}\right)=\sum_{\Delta_{3}^{+}} C_{\Delta_{1}, \Delta_{2}}^{\Delta_{1}^{+}}\left(Z_{1}-Z_{2}\right)^{\Delta_{3}^{+}-\Delta_{1}-\Delta_{2}} \varphi_{\Delta_{3}}^{+}\left(Z_{2}\right)+\ldots
$$

Notice that taking secondary fields of the conformal families of σ and σ^{+}one obtains an $N^{-2 / 15-k}$ dependence, where k is a positive integer. (From the families of ρ and ρ^{+}one obtains an $N^{-4 / 3-k}$ dependence.) From equations (4), (6), (8) and (11) we have $a_{0}(2 \pi)^{2 / 15}=A_{1}=1.00142(7) \quad\left(C_{1 / 15,1 / 15,1 / 15}\right)^{2}=A_{2} / A_{1}=1.0924(1)$.
For a finite number of sites N, we expect corrections to the states. In general the Hamiltonian will be changed by irrelevant operators (Cardy 1986b)

$$
\begin{equation*}
H=H^{\mathrm{c}}+\sum_{i} \gamma_{i} \int_{-N / 2}^{N / 2} \mathrm{~d} v \varphi_{i}(0, v) \tag{13}
\end{equation*}
$$

where γ_{i} are parameters and φ_{i} are local fields of the conformal theory having scaling dimensions ($\Delta_{i}+r_{i}, \bar{\Delta}_{i}+\bar{r}_{i}$), with $g_{i}=\Delta_{i}+r_{i}+\bar{\Delta}_{i}+\bar{r}_{i}-2>0$ and $g_{i+1} \geqslant g_{i}$. In first-order perturbation theory one obtains from (13) corrections to a state proportional to $N^{-g_{1}}$ (Reinicke 1987). In order to simplify the formulae we assume that $g_{0}<g_{1}$ and that φ_{0} is a primary field with dimensions $\Delta_{0}=\bar{\Delta}_{0}=: \Delta$. Suppose we want to obtain the leading corrections to the matrix element $\langle 0| \psi^{+}(0,0)\left|\Delta^{\prime}, \Delta^{\prime}\right\rangle$, where ψ^{+}is a primary field with scaling dimensions $\Delta^{\prime}=\bar{\Delta}^{\prime}$. By means of the method exposed in a previous paper (Reinicke 1987) we have

$$
\begin{align*}
&\langle 0| \psi^{+}(0,0)\left|\Delta^{\prime}, \Delta^{\prime}\right\rangle={ }^{\mathrm{c}}\langle 0| \psi^{+}(0,0)\left|\Delta^{\prime}, \Delta^{\prime}\right\rangle^{\mathrm{c}} \\
&-\gamma_{0} \sum_{i \neq 0}\left(E_{i}^{\mathrm{c}}-E_{0}^{\mathrm{c}}\right)^{-1}\langle 0| \int_{-N / 2}^{\mathrm{c} / 2} \mathrm{~d} v \varphi_{0}(0, v)|i\rangle^{\mathrm{c}}\left(i\left|\psi^{0}(0,0)\right| \Delta^{\prime}, \Delta^{\prime}\right\rangle^{\mathrm{c}} \\
&-\gamma_{0} \sum_{\left.i \neq \mid د^{\prime}, د^{\prime}\right)}\left(E_{i}^{\mathrm{c}}-\left.E_{د^{\prime}, \Delta^{\prime}}\right|^{-\mathrm{c}}\langle 0| \psi^{+}(0,0)|i\rangle^{\mathrm{c}}\langle i| \int_{-N / 2}^{\mathrm{c} / 2} \mathrm{~d} v \varphi_{0}(0, v)\left|\Delta^{\prime}, \Delta^{\prime}\right\rangle^{\mathrm{c}}\right. \\
&={ }^{\mathrm{c}}\langle 0| \psi^{+}(0,0)\left|\Delta^{\prime}, \Delta^{\prime}\right\rangle^{\mathrm{c}}\left[1-\frac{\gamma_{0}}{2}\left(C_{\Delta^{\prime}, \Delta^{+}, \Delta}\right)^{2}(2 \pi)^{2 د-1} N^{2-2 د}\right. \\
&\left.\times\left(\int_{0}^{1} \mathrm{~d} x x^{د^{-1}} F(\Delta, \Delta ; 1 ; x)+\int_{0}^{1} \mathrm{~d} x \frac{1}{x}(F(\Delta, \Delta ; 1 ; x)-1)\right)\right] \tag{14}
\end{align*}
$$

where F is the hypergeometric function. In detail

$$
\begin{align*}
\sum_{i \neq 0}\left(E_{i}^{\mathrm{c}}-E_{0}^{\mathrm{c}}\right)^{-1} & \langle 0| \int_{-N / 2}^{\mathrm{c} / 2} \mathrm{~d} v \varphi_{0}(0, v)|i\rangle^{\mathrm{c}}\langle i| \psi^{+}(0,0)\left|\Delta^{\prime}, \Delta^{\prime}\right\rangle^{\mathrm{c}} \\
= & \int_{0}^{\infty} \mathrm{d} \tau \int_{-N / 2}^{N / 2} \mathrm{~d} v \sum_{i \neq 0} \exp \left[-\left(E_{i}^{\mathrm{c}}-E_{0}^{\mathrm{c}}\right) \tau\right]^{\mathrm{c}}\langle 0| \varphi_{0}(0, v)|i\rangle^{\mathrm{c}}\langle i| \psi^{+}(0,0)\left|\Delta^{\prime}, \Delta^{\prime}\right\rangle^{\mathrm{c}} \\
= & \int_{0}^{\infty} \mathrm{d} \tau \int_{-N / 2}^{N / 2} \mathrm{~d} v \lim _{\tau_{3} \rightarrow 0} \exp \left[\left(E_{\Delta^{\prime}, \Delta^{\prime}}^{\mathrm{c}}-E_{0}^{\mathrm{c}}\right) \tau_{3}\right] \\
& \times \frac{{ }^{\mathrm{c}}\langle 0| \varphi_{0}(-\tau, v) \psi^{+}(0,0) \psi\left(\tau_{3}, v_{3}\right)|0\rangle^{\mathrm{c}}}{{ }^{\mathrm{c}}\left(\Delta^{\prime}, \Delta^{\prime}|\psi(0,0)| 0\right\rangle^{\mathrm{c}}} \\
= & \left(C_{\Delta^{\prime}, \Delta^{+}, \Delta}\right)^{2}\left(\frac{2 \pi}{N}\right)^{2 \Delta}{ }^{\mathrm{c}}\left(0\left|\psi^{+}(0,0)\right| \Delta^{\prime}, \Delta^{\prime}\right\rangle^{\mathrm{c}} \int_{0}^{\infty} \mathrm{d} \tau \int_{-N / 2}^{N / 2} \mathrm{~d} v \\
& \times \frac{\exp (-2 \pi \tau \Delta / N)}{[2 \cosh (2 \pi \tau / N)-2 \cos (2 \pi \nu / N)]^{\Delta}} \\
= & \frac{1}{2}\left(C_{\Delta^{\prime} \Delta^{\prime}, \Delta}\right)^{2}(2 \pi)^{2 \Delta-1} N^{2-2 \Delta} \int_{0}^{1} \mathrm{~d} x x^{\Delta-1} F(\Delta, \Delta ; 1 ; x) \tag{15}
\end{align*}
$$

The integrals in (14) are divergent for $\Delta>1$, but can easily be regularised. For $0<\Delta<1$ we have after $2 K$ partial integrations

$$
\begin{align*}
& \int_{0}^{1} \mathrm{~d} x x^{\Delta-1} F(\Delta, \Delta ; 1 ; x)+\int_{0}^{1} \mathrm{~d} x x^{-1}[F(\Delta, \Delta ; 1 ; x)-1] \\
&= \sum_{\nu=1}^{K}\left[\frac{\Gamma(2 \nu-2 \Delta)}{\Gamma^{2}(\nu+1-\Delta)}\left(\frac{(\Delta-3 \nu) \Gamma^{2}(\nu) \Gamma^{2}(1-\Delta)}{\Gamma(\nu-\Delta) \Gamma(1+\nu-\Delta)}-3\right)-\frac{2}{\Delta-\nu}\right] \\
&+\frac{(K!)^{2} \Gamma^{2}(1-\Delta)}{\Gamma^{2}(K+1-\Delta)} \int_{0}^{1} \mathrm{~d} x x^{\Delta-1} F(\Delta-K, \Delta-K ; 1 ; x) \\
&+\int_{0}^{1} \frac{\mathrm{~d} x}{x}[F(\Delta-K, \Delta-K ; 1 ; x)-1] \tag{16}
\end{align*}
$$

The right-hand side of this equation is perfectly well defined for $K<\Delta<K+1$ (the limit $\Delta \rightarrow K+\frac{1}{2}$ is finite).

Now we return to the magnetisation of the three-state Potts model. It was established numerically (von Gehlen et al 1987) that φ_{0} is the primary field with $\Delta=\bar{\Delta}=\frac{7}{5}$, and $\gamma_{0}=0.009237$ (7) $\left(g_{1}=2>g_{0}=\frac{4}{5}\right)$. The constant $\left(C_{1 / 15^{+}, 1 / 15,7 / 5}\right)^{2}$ was also determined. Inserting these values into (14) and using (16), one has

$$
\begin{equation*}
\langle 0| \sigma^{+}(0,0)|1\rangle=\left(\frac{2 \pi}{N}\right)^{2 / 15}\left(1+\frac{0.006739(5)}{N^{0.8}}+\ldots\right) \tag{17}
\end{equation*}
$$

where the numerical error is due to the error in γ_{0}. This reproduces the value of $B_{1} / A_{1}=0.0083$ (5) of (8) within 20%. The ratio B_{2} / A_{2} could be determined in principle using the same method. However, in this case one needs the four-point function $\left\langle\sigma^{+} \varphi_{0} \sigma^{+} \sigma^{+}\right\rangle$-which is not known-instead of the three-point function $\left\langle\varphi_{0} \sigma^{+} \sigma\right\rangle$.

To conclude we want to give a list of the coefficients $C_{\Delta_{1}, \Delta_{2}, \Delta_{3}}$ (partially published by von Gehlen et al (1987)) for the three-state Potts model. Apart from the trivial coefficients $C_{\Delta, \Delta^{+}, 0}=1$ there are essentially 12 non-vanishing coefficients, namely
$C_{7 / 5.2 / 5.2 / 5}=-\frac{2}{3} C_{7 / 5,7 / 5.7 / 5}=-\frac{1}{6} C_{7 / 5,1 / 15,1 / 15^{*}}$
$2\left(C_{2 / 5,1 / 15,1 / 15^{+}}\right)^{2}=\frac{7}{6}\left(C_{7 / 5,2 / 5,2 / 5}\right)^{2}=\left(\frac{\Gamma(3 / 5)}{\Gamma(2 / 5)}\right)^{3 / 2}\left(\frac{\Gamma(1 / 5)}{\Gamma(4 / 5)}\right)^{1 / 2}=: X=1.092436 \ldots$
$\left(C_{2 / 3,2 / 3^{+}, 3}\right)^{2}=-\frac{13}{7}\left(\frac{2}{3}\right)^{4} \quad\left(C_{7 / 5,2 / 5,3}\right)^{2}=\frac{21}{26} \quad\left(C_{2 / 5,1 / 15,2 / 3^{+}}\right)=\frac{2}{3}$
$C_{1 / 15,1 / 15,1 / 15} \quad C_{2 / 3,2 / 3,2 / 3} \quad C_{1 / 15,1 / 15,2 / 3} \quad C_{7 / 5,1 / 15,2 / 3^{+}} \quad C_{1 / 15,1 / 15^{+}, 3}$
where the last ones are not known. (Notice that the coefficients are symmetric under any interchange of the Δ and that $C_{\Delta_{1}, \Delta_{2}, \Delta_{3}}=C_{\Delta_{1}^{+}, \Delta_{2}^{\dagger}, \Delta_{3}^{+}}$.) Considering the operator content of cyclic boundary conditions together with periodic ones (von Gehlen and Rittenberg 1986) one can recognise a multiplet structure given by two multiplets $\left(0,3, \frac{2}{3}, \frac{2+}{3}\right)$ and $\left(\frac{7}{5}, \frac{2}{5}, \frac{1}{15}, \frac{1}{15}+\right.$. From (18) we see that for $\Delta_{i}(i=1,2,3)$ belonging to the second multiplet ($\left.C_{\Delta_{1}, \Delta_{2}, \Delta_{3}}\right)^{2}$ always has the structure 'simple rational number times X^{\prime}. From this and (12) we are tempted to set $\left(C_{1 / 15,1 / 15,1 / 15}\right)^{2}=X$, where X is given in (18).

We are grateful to V Rittenberg for stimulating discussions and substantial support.

References

Cardy J L 1986a Nucl. Phys. B 275200

- 1986b Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New York: Academic)
Dotsenko V I S 1984 Nucl. Phys. B 23554
Friedan D, Qiu Z and Shenker S 1984 Phys. Rev. Lett. 521575
Hamer C J 1982 J. Phys. A: Math. Gen. 15 L675
Reinicke P 1987 J. Phys. A: Math. Gen. to be published
Van den Broeck J M and Schwartz L W 1979 SIAM J. Math. Anal. 10639
von Gehlen G and Rittenberg V 1986 J. Phys. A: Math. Gen. 19 L625
von Gehlen G, Rittenberg V and Vescan T 1987 J. Phys. A: Math. Gen. 202577

